
NSFC-61261130588 ANR-12-IS02-002-01

Lindicle

Linked data interlinking in a cross-lingual environment
跨语言环境中语义链接关键技术研究

Liage des données dans un environnement interlingue

D5.2 QM Similarity computation

Coordinator: Yan Zhang
With contributions from: Juanzi Li, Zhigang Wang, Jérôme Euzenat

Quality reviewer: Jérôme David

Reference: Lindicle/D5.2/v4

Project: Lindicle ANR-NSFC Joint project

Date: April 3, 2017

Version: 4

State: final

Destination: public

Deliverable 5.2 ANR-NSFC Joint project

Executive Summary

In Deliverable 5.1, we proposed a novel instance matching approach to deal with large scale
linked data sets. To reduce the entities to match and reflect the interest of users, this
approach postpones instance matching until answers to queries are returned from sources,
hence the qualification of query-driven instance matching. The approach firstly computes
local similarities between instances in query answers according to their identifying properties
and, eventually, existing global similarity. It then propagates the similarities to connected
resources. Optionally, user-feedback may be gathered to confirm resulting matches in the
query answers. The resulting local similarities are integrated within a global similarity.

Compared with traditional approaches of instance matching, this approach provides the
following advantages:

1. Instance matching is performed on the query results in each iteration, and there is no
need to load the whole data set at a time.

2. We only get alignments between the instances which appear in the query results. The
pay-as-you-go method not only lowers the cost of computation, but reflects users’
interest.

3. We reduce the scale of the instances to be aligned by using user queries. So we can use
more sophisticated algorithms (such as Similarity Flooding) to match them.

Here, we complete the approach description by detailing the procedure for updating the
global QM -similarity based on the current local matching eventually completed by user
feedback.

We also design several experiments to verify the effectiveness and the efficiency of our
system. In particular, we compare the approach matching data sets globally or piecewise.
We also evaluate the contribution of similarity propagation, necessity property filtering and
user feedback.

The evaluation experiments compare speed, precision and recall on matching biblio-
graphic data sets from OAEI 2009 with automatically generated queries.

The results first show that the approach is more practical than global matching in terms
of speed. They also highlight that all the other features contribute to the quality of the
results returned by the approach.

2 of 20

Lindicle

Document Information

Project number ANR-NSFC Joint project Acronym Lindicle

跨语言环境中语义链接关键技术研究
Full Title Linked data interlinking in a cross-lingual environment

Liage des données dans un environnement interlingue

Project URL http://lindicle.inrialpes.fr/

Document URL

Deliverable Number 5.2 Title QM Similarity computation

Work Package Number 5 Title Query driven cross-lingual data interlinking

Date of Delivery Contractual M48 Actual 31-12-2016

Status final final �
Nature prototype � report � dissemination �
Dissemination level public � consortium �

Authors (Partner) Juanzi Li, Zhigang Wang, Jérôme Euzenat

Resp. Author
Name Yan Zhang E-mail z-y14@mails.tsinghua.edu.cn

Partner Tsinghua U.

Abstract
(for dissemination)

This report completes the description of our query-driven instance matching
approach by detailing how the global QM − similarity is updated.
We also design several experiments to test the effectiveness and the efficiency
of the proposed solutions. Experimental results show that the query-drive
approach is better than the traditional approach which gets the whole result at
once. It also compares the various features of the proposed approach showing
that they all contribute to better results.

Keywords
data interlinking, linked data, instance matching, query-driven matching,
pay-as-you-go

Version Log

Issue Date Rev No. Author Change

2015-07-03 1 Yan Zhang Input from QDIM

2016-09-08 2 Jérôme Euzenat Added summary of D5.1

2017-03-20 3 Jérôme Euzenat Collected whole content

2017-03-27 4 Jérôme Euzenat Corrected typos; Added executive summary

3 of 20

Deliverable 5.2 ANR-NSFC Joint project

Table of Contents

1 Introduction 5

2 Summary of the query-driven instance matching approach 6

3 QM-similarity 7
3.1 Definition . 7
3.2 Example . 7
3.3 Algorithm . 8

4 Evaluation 9
4.1 Experimental setup . 9
4.2 Comparison with global matching . 12
4.3 User feedback . 14
4.4 Identifying and necessity properties . 15

5 Conclusion 18

A Experiment results in one diagram 19

4 of 20

Lindicle Introduction

1. Introduction

I
nstance matching is an important problem in the context of linked data. The query-
driven approach to instance matching presented in Deliverable 5.1 aims at overcoming

several drawback of existing approaches:

1. The link sets will not be available before the instance matching process is completed
over the whole data sources.

2. Given the dynamics of linked open data sets, it is a waste of resources to match them
to keep up.

3. Users usually only need links over a small part of the data sets.
4. Given the size of the data sets to match, it is impracticable to process accurate but

resource-hungry algorithms on these.

According to the aforementioned problems, an incremental approach, in which instances
will be matched as soon and only as they are needed, is naturally suited. Moreover,

since such an approach can benefit from the availability of users eager to obtain results, a
pay-as-you-go approach [Madhavan et al. 2007] seems possible.

The approach presented in Deliverable 5.1, processes queries against these data sets
and matches the results of these queries. This leads to match smaller amount of data
that are known to be comparable. To perform this local match the approach uses a global
similarity that is accumulated over the successive query performed. It also take advantage
of the identification of identifying properties which benefit from the knowledge accumulated
through the successive iteration. Finally, the approach can more easily obtain feedback
from users as the data is circumvented by their center of interest. This feedback is used
to refine identifying properties and the results are aggregated in the global similarity. At
any moment, instance alignments between the different data sets can be extracted from the
global similarity.

Compared with traditional approaches of instance matching, this approach provides the
following advantages:

1. Instance matching is performed on the query results in each iteration, and there is no
need to load the whole data set at a time.

2. We only get alignments between the instances which appear in the query results. The
pay-as-you-go method not only lowers the cost of computation, but reflects users’
interest.

3. We reduce the scale of the instances to be aligned by using user queries. So we can use
more sophisticated algorithms (such as Similarity Flooding) to match them.

This report completes the presentation of the query-driven instance matching approach of
Deliverable 5.1 by describing how is the global QM −similarity computed. It then provides
an evaluation of the various components of the approach.

After recalling the approach (Chapter 2) taken for query-driven instance matching, we
detail the methods used to compute global similarity (Chapter 3). Finally, Chapter 4 presents
experimental results before concluding (Chapter 5).

5 of 20

Deliverable 5.2 ANR-NSFC Joint project

2. Summary of the query-driven instance matching approach

We recall here the approach proposed in Deliverable 5.1, were the full description can be
found.

The principles of query-driven instance matching can be summarized as follows:

1. A local similarity is established across query answers over the same data sets;
2. This local similarity is based on (a) previously established global similarity, (b) iden-

tifying and necessary properties;
3. The local similarity obtained for each pairs of answers is aggregated in a global simi-

larity and propagated through similarity flooding;
4. Identifying and necessary properties used to compute local matching are based on sta-

tistical measures, first of property value cardinality and later on instance co-occurence
in query answers;

5. Optionally, user-feedback may be used in order to confirm obtained matches on query
answers.

Query-driven instance matching aims at finding simultaneously and progressively link sets
across several data sources (d1, . . .) accessible through SPARQL queries (q1, . . . qt). Hence
it will match query results (g1,t, . . .) instead of whole data sets by taking advantage of the
links already found (σtQM) in order to improve the link set (σt+1

QM). At any moment, it is

possible to extract a link set Lt from σtQM .

g1,t

g2,t

gt
Local

similarity
User

feedback

g

σL

Global
similarity
update

σQM

Necessity
property
update

UC
Nec, Id

U

Lt

Figure 2.1: Precise view of query-driven instance matching. Dashed lines present the update
process whose result is used at the following iteration.

More precisely, at each new query qt, each pair of answers gk,t, gl,t corresponding to
gk,t = eval(qt, dk) and gl,t = eval(qt, dl) are compared and a local similarity σL is computed
between the resources appearing in these answers.

From all matches between all the answers of query qt is computed a global similarity
σQM which is obtained by aggregation of the local matches to the global similarity obtained
from the previous queries (q1, . . . qt−1). This similarity is used to extract a match M between
them (which can be though of as a local link set) used to build the result gt.

Optionally, feedback from users can be sought.
Our approach is executed iteratively, and one iteration can be separated into three steps,

namely query, local similarity calculation and global similarity calculation. At each iteration,
we firstly perform a query on the source ontologies. Then we calculate the local similarity
based on the query results. Finally, we use the local results to update the global similarity
and get the alignments according to it.

The overall algorithm is presented in Deliverable 5.1. In the next chapter, we first fill the
gap left open in this deliverable by answering to the question “How is σQM computed?”.

6 of 20

Lindicle QM-similarity

3. QM-similarity

Briefly speaking, the global query-driven similarity, or QM-similarity, is computed by com-
bining the normalised google distance and measuring the ratio of matches between two
resources with respect to their number of co-occurence. We first provide a precise definition
for these concepts (Section 3.1), illustrate it by an examples (Section 3.2) and finally provide
the actual algorithm (Section 3.3).

3.1 Definition

Intuitively, if imatches j, they would co-occur more in answers and possibly be matched when
they co-occur in the answers. Based on this consideration, the QM-Similarity is introduced
to measure the similarity between instances in the system, which is described as follows:

σQM (i, j) = σNQD(i, j)× πmco(i, j)

where

σNQD(i, j) =
1

1 +NQD(i, j)

NQD(i, j) =
max(log(n(i)), log(n(j)))− log(nco(i, j))

log(n)−min(log(n(i)), log(n(j)))

πmco(i, j) =
nm(i, j)

nco(i, j)

The n in the NQD formula denotes the total number of queries submitted to the inte-
gration system; n(i) denotes the number of queriescontaining the instance i in answers so
far. nco(i, j) denotes the number of queries in which i and j co-occur and nm(i, j) denotes
the number of queries in which i and j are matched.

πmco(i, j) is the probability of i and j matching given that they co-occur. NQD(i, j) is
similar to the Normalized Google Distance [Gligorov et al. 2007] except that the number of
pages containing a term is replaced by the numbers of queries containing an instance.

3.2 Example

Consider the example shown in Figure 2 in Deliverable 5.1. Before the query The profile
and authors of ”Ontology Matching” is evaluated, we assume that the values for the various
indicator are as in column 100 of Table 3.1. They will be updated after the query of according
to column 101.

Indeed, according to the above formulas:
NQD(per − 1, 1 per) = log(11)−log(7)

log(101)−log(7) = 0.168

σQM (per − 1, 1 per) = 1
(1+NQD(per−1,1 per)) ×

6
7 = 0.734

σQM (pub− 1, 1 per) = 1
(1+NQD(pub−1,1 per)) ×

0
7 = 0

Because of the alignment between per−1 and 1 per in the query result, the QM-similarity
σNQD(pub− 1, 1 per) is increased from 0.71 to 0.73. On the other hand, pub− 1 and 1 per
are not matched, so σQM (pub− 1, 1 per) remains equal to 0.

7 of 20

Deliverable 5.2 ANR-NSFC Joint project

n 100 101

n(per − 1) 10 11
n(1 per) 6 7
n(pub− 1) 15 16
nco(per − 1, 1 per) 6 7
nm(per − 1, 1 per) 5 6
nco(pub− 1, 1 per) 6 7
nm(pub− 1, 1 per) 0 0
σQM (per − 1, 1 per) .71 .734
σQM (pub− 1, 1 per) 0. 0.

Table 3.1: Update of the global similarity σQM .

3.3 Algorithm

Algorithm 1 takes advantage of data structures for storing similarities:

– RIM [i, j] contains σQM (i, j);
– nco[i, j] contains nco(i, j);
– nm[i, j] contains nm(i, j);

Other notations are described in Table ??.

Algorithm 1 Computation of the global similarity

1: procedure AggregateQM(g, g′, M)
Input: g, g′: two graph answers
Input: M : matching instances
Output: RIM : updated similarity structure
2: for all i ∈ nodes(g) do
3: for all j ∈ nodes(g′) do
4: nco[i, j] := nco[i, j] + 1
5: if 〈i, j〉 ∈M then
6: nm[i, j] := nm[i, j] + 1
7: end if
8: RIM [i, j] := σQM (i, j)
9: end for

10: end for
11: return RIM

12: end procedure

8 of 20

Lindicle Evaluation

4. Evaluation

In this chapter, we describe experiments for evaluating the proposed approach and analyse
the results in detail.

4.1 Experimental setup

There are instance matching tracks are OAEI. However, they do not involve user queries.
The OAEI interactive track involves user feedback, but concerns ontology matching and the
feedback is requested by the systems, it is not driven by users through their queries. Hence
it is rather difficult to compare with OAEI results. We still take advantage of OAEI datasets
(§4.1.1) and references (§4.1.3), but introduce query generation (§4.1.2), and thus do not
compare with other systems as mandated by OAEI rules. Instead, we compare components
of the proposed solutions (§4.1.4) with usual measures (§4.1.5).

4.1.1 Datasets

We use the AKT-Rexa-DBLP data sets from the OAEI instance matching campaign1 for the
evaluations. It includes three data sets, namely eprints, Rexa and SWETO-DBLP.

1) The eprints data set comes from AKT (Advanced knowledge Technologies) research
project and extract the instances using a HTML wrapper from the source website. It
is the smallest one of the three data sets.

2) The Rexa data set is extracted from the search results of the search server on http:

//www.rexa.info/.

3) The SwetoDblp data set is a large-size data set focused on bibliography data of Computer
Science publications where the main data source is DBLP [alemanmeza2007a]. It was
created from a XML dump of DBLP and other data sets that are used to add relationships
to other entities such as Publishers, Companies and Universities.

Table 4.1 shows the number of instances in these data sets.

Data set #Instances #Blank Nodes

Eprints 847 283

Rexa 14771 3721

Sweto-Dblp 1642945 1007887

Table 4.1: Sizes of the 3 data sets.

The three data sets use the same schema, the Opus schema, to represent the data in
RDF. This allows to specifically evaluate the query-driven matching approach and not the
ontology alignment. The instances in the datasets can be classified into two kinds, authors
and documents.

4.1.2 Query Construction

In the experiment, three instance matching tasks are constructed which are Eprints-Rexa
(correspondence between answers from these two data sets), Eprints-Dblp and Rexa-Dblp.

1http://oaei.ontologymatching.org/2009/instances/

9 of 20

http://www.rexa.info/
http://www.rexa.info/

Deliverable 5.2 ANR-NSFC Joint project

To imitate user queries, we built 404 SPARQL queries described according to instances of
the Eprints data set (because it is the smallest of the three). We use the CONSTRUCT
query form to get the single RDF graph specified by the graph template, which will be the
input of the matching system (see Figure??). These queries can be divided into three sets:
1) query an author’s documents; 2) query a document’s authors; 3) query all the co-authors
of an author. We give an example of each query type.

1. Query to discover an author’s documents

CONSTRUCT {

?document opus:author ?author.

?document rdf:type ?type.

?document rdfs:label ?label.

?author rdf:type ?type1.

?author foaf:name ?name.

} WHERE {

?document opus:author ?authors.

?document rdf:type ?type.

?document rdfs:label ?label.

?authors rdfs:member ?author.

?author rdf:type ?type1.

?author foaf:name ?name.

FILTER(regex(?name ,"*Nordlander*")

&& regex (?name ,"*Tomas*")).

}

2. Query to find a document’s authors

CONSTRUCT {

?document opus:author ?author.

?document rdf:type ?type.

?document rdfs:label ?label.

?author rdf:type ?type1.

?author foaf:name ?name.

} WHERE {

?document opus:author ?authors.

?document rdf:type ?type.

?document rdfs:label ?label.

?authors rdfs:member ?author.

?author rdf:type ?type1.

?author foaf:name ?name.

FILTER(regex(?label , "AQUA: \\

An Ontology -Driven \\

Question Answering System.")).

}

3. Query to obtain all the co-authors of an author

CONSTRUCT {

?document opus:author ?author1.

?document opus:author ?author2.

?document rdf:type ?type.

10 of 20

Lindicle Evaluation

?document rdfs:label ?label.

?author1 rdf:type ?type1.

?author1 foaf:name ?name1.

?author2 rdf:type ?type2.

?author2 foaf:name ?name2.

} WHERE {

?document opus:author ?authors.

?document rdf:type ?type.

?document rdfs:label ?label.

?authors rdfs:member ?author1.

?author1 rdf:type ?type1.

?author1 foaf:name ?name1.

?authors rdfs:member ?author2.

?author2 rdf:type ?type2.

?author2 foaf:name ?name2.

FILTER (regex(?name1 ,"*Nordlander*")

&& regex (?name1 ,"*Tomas*")

&& ?author1 != ?author2).

}

Measure Eprints Rexa Dblp

min. 0 0 0

avg. 19.7 26 56.9

max. 152 192 435

instances 847 14771 1642945

avg./inst. 2× 10−2 1.8−3 3.46× 10−5

Table 4.2: The instance numbers for query answers.

Table 4.2 shows the average, maximum and minimum numbers of instances for the query
answers. The instances measure denotes the number of instances in the data sets. We can
notice that the size of query answers are much lower than their source ontologies.

4.1.3 Reference Generation and Evaluation

To evaluate the overall effectiveness of our approach, we evaluated these queries one by
one and segmented the whole process into three phases. In each phase, one third of the
constructed queries are involved. At the end of each phase, evaluations are performed on the
results of the phase according to the references extracted from the Eprints-Rexa-Dblp gold
standard. Thus, we can identify the improvement introduced by our methods.

To evaluate the approaches in different phases, we build the reference according to the
gold standard provided by OAEI. In order to ensure consistency of the reference in different
phases of our query-driven approach, we extract the mappings whose entity1 appears in the
matching result of the query-driven approach at the end of phase 1. Algorithm 2 shows the
specific steps of reference generation.

11 of 20

Deliverable 5.2 ANR-NSFC Joint project

Algorithm 2 Reference generation

1: procedure ReferenceGeneration(Mref ,Ms)
Input: Mref : the matching pairs in the golden standard
Input: Ms: the matching result of phase s
Output: Mexp: the reference to use in phase s
2: Mexp := ∅
3: for all (ip, iq) ∈Mi do
4: for all (ip, i) ∈Mref do
5: Mexp := Mexp ∪ {(ip, i)}
6: end for
7: end for
8: return Mexp

9: end procedure

4.1.4 Approaches

We implement the following approaches from the solution in Chapter 2 to verify its validity.
The thresholds in these approaches are obtained based on observing matching results.

– IProp: The approach without Similarity Flooding (at Step 2 of the solution in Sec-
tion 3.3 of Deliverable 5.1), necessary property filtering (at Step 4) and user feedback
(at Step 6).

– IProp-F: The IProp approach with Similarity Flooding.

– IProp-U: The IProp approach with user feedback.

– IProp-FU: The Iprop-F approach with user feedback.

– Iprop-N: The Iprop approach with Necessity property filtering.

– Iprop-FN: The Iprop-F approach with Necessity property filtering.

We implemented all solutions in Java and experiments are run on a sever with 8-core
Intel Xeon E5-2680 processor(@2.7Ghz) and 32GB memory. The operating system is Ubuntu
14.04.

4.1.5 Performance Metrics

We use Precision, Recall and F1-Measure to measure the performance of our proposed solu-
tion. They are defined as usual: Precision (P) is the percentage of correct discovered matches
in all discovered matches; Recall (R) is the percentage of correct discovered matches in all
correct matches; F1-Measure (F1) is the harmonic means of precision and recall.

F1 =
2

1/R+ 1/P

4.2 Comparison with global matching

This part compare the IProp and IProp-F approaches with the solution named Global which
utilizes the same similarity computing method as IProp to obtain all the correspondences

12 of 20

Lindicle Evaluation

between the ontologies. The Global approach uses the same configuration, e.g., filter thresh-
old, as IProp. Due to memory constraints, the Global approach cannot run the Similarity
Flooding algorithm.

Global phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

global

Iprop

Iprop-F

Global phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
F1-Measure

global

Iprop

Iprop-F

Global phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Recall

global

Iprop

Iprop-F

Figure 4.1: Eprints-Rexa.

Global phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

global

Iprop

Iprop-F

Global phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
F1-Measure

global

Iprop

Iprop-F

Global phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Recall

global

Iprop

Iprop-F

Figure 4.2: Eprints-Dblp.

Global phase1 phase2 phase3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

global

Iprop

Iprop-F

Global phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
F1-Measure

global

Iprop

Iprop-F

Global phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Recall

global

Iprop

Iprop-F

Figure 4.3: Rexa-Dblp.

Figure 4.1, 4.2, 4.3 and Table 4.3 show the comparison between IProp, IPropF and Global
in Precision, Recall, F1-Measure and elapsed time respectively. From these results, we can
observe that:

13 of 20

Deliverable 5.2 ANR-NSFC Joint project

1. The elapsed timed of the query-driven approach (IProp) is much less and the F1-
Measure is higher than the Global’s in all three datasets, IProp improve the efficiency
and effectiveness significantly.

2. Considering F1-Measure values in different phases of IProp and IProp-F, with more and
more queries being posted into the system, the whole performance of the query-driven
approaches increases.

3. The recall of Global is always higher than that of IProp since some matching pairs do
not appear together in query results.

4. The precision of IProp decreases over phases. This is because more matching pairs are
added into results incrementally as more and more queries are being executed.

5. The precision of IProp-F in Figure 4.1, 4.2 and 4.3 is higher than IProp, but recall
is always less. This is because Similarity Flooding will modify the similarities by
propagating them among the instances, and then obtain more accurate results. The
results of the three experiments show that the effectiveness of Similarity Flooding
depends on the specific data set. IProp-F get a better performance only on the Eprints-
Dblp data set.

Task Global IProp IProp-F

Eprints-Rexa 89.7 6.4 8.2

Eprints-Dblp 8757.8 12.3 15.6

Rexa-Dblp 310255.4 21.56 26.5

Table 4.3: The elapsed time of the compared methods(s).

4.3 User feedback

In this part, we compare IProp with IProp-U and IProp-F with IProp-FU to evaluate the
efficiency of user feedback. In IProp-U and IProp-FU, after the QM-similarities are calcu-
lated, only the elements with the maximum similarity among the current matching results
are recommended to the user. Table 4.4 reveals the precision of the recommended matches.
The results indicate the accuracy of the proposed approaches (the overall precision reaches
0.93). Figure 4.4, 4.5 and 4.6 show the comparative results. From these figures, we can note
that in all the comparisons, the approaches with user feedback are higher in precision and
F1-Measure and equivalent in recall to the non-feedback counterparts.

Approach Eprints-Rexa Eprints-Dblp Rexa-Dblp avg.

IProp 0.96 0.92 0.95 0.94

IProp-F 0.89 0.89 0.96 0.92

avg. 0.93 0.91 0.96 0.93

Table 4.4: The precision of the recommended matches.

14 of 20

Lindicle Evaluation

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

Iprop

Iprop-U

Iprop-F

Iprop-FU

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
F1-Measure

Iprop

Iprop-U

Iprop-F

Iprop-FU

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Recall

Iprop

Iprop-U

Iprop-F

Iprop-FU

Figure 4.4: Eprints-Rexa with user feedback.

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

Iprop

Iprop-U

Iprop-F

Iprop-FU

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
F1-Measure

Iprop

Iprop-U

Iprop-F

Iprop-FU

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Recall

Iprop

Iprop-U

Iprop-F

Iprop-FU

Figure 4.5: Eprints-Dblp with user feedback.

phase1 phase2 phase3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

Iprop

Iprop-U

Iprop-F

Iprop-FU

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
F1-Measure

Iprop

Iprop-U

Iprop-F

Iprop-FU

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Recall

Iprop

Iprop-U

Iprop-F

Iprop-FU

Figure 4.6: Rexa-Dblp with user feedback.

4.4 Identifying and necessity properties

As mentioned before, in the experimental data sets, there are two kinds of instances: the
authors typed by the foaf:Person class and the documents. The instances of foaf:Person
have the property foaf:name. According to the method in Chapter 4 of Deliverable 5.1,
the identifying degree dpi of this property is 0.99. Therefore, it can be regarded as an
identifying property of foaf:Person. For the document classes existing in all the three on-
tologies, Table 4.5 shows the dpi values of their properties where the Article P denotes the

15 of 20

Deliverable 5.2 ANR-NSFC Joint project

class Article in Proceedings. From this table, the rdfs:label property can be selected as an
identifying property of both classes.

Because only one single valid property is contained in the foaf:Person class, we merely
consider the necessity property in the document classes. Table 4.6 shows the necessity
degrees of the properties in the aforementioned document classes calculated based on the
user confirmed matches generated by the IProp-U approach on all the queries. Similar
results can be obtained through the IProp-FU approach. Therefore, in this experiment, the
opus:pages property is chosen as the necessity property in IProp-N and IProp-FN approaches.

Figure 4.7, 4.8, and 4.9 give a comparison between IProp and IProp-N and IProp-F and
IProp-FN respectively to show the effectiveness of the necessity properties. By comparing
the results, the approaches can accurately filter out the match errors, through the necessity
properties, and thus improve the precision, nearly retain the recall and consequently raise
their F1-Measure. It is because the necessity degree of the property opus:pages is high
enough (0.98 for Article P and 1 for Article), this filter process can hardly reduce the recall.

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

Iprop

Iprop-N

Iprop-F

Iprop-FN

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
F1-Measure

Iprop

Iprop-N

Iprop-F

Iprop-FN

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Recall

Iprop

Iprop-N

Iprop-F

Iprop-FN

Figure 4.7: Eprints-Rexa with necessity properties filter.

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

Iprop

Iprop-N

Iprop-F

Iprop-FN

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
F1-Measure

Iprop

Iprop-N

Iprop-F

Iprop-FN

phase1 phase2 phase3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Recall

Iprop

Iprop-N

Iprop-F

Iprop-FN

Figure 4.8: Eprints-Dblp with necessity properties filter.

Class label pages book title year volumn

Article P 0.99 0.07 0.01 0.00 /

Article 0.98 0.13 / 0.00 0.00

Table 4.5: Identifying values of the properties of the document classes.

16 of 20

Lindicle Evaluation

phase1 phase2 phase3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision

Iprop

Iprop-N

Iprop-F

Iprop-FN

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
F1-Measure

Iprop

Iprop-N

Iprop-F

Iprop-FN

phase1 phase2 phase3
0.4

0.5

0.6

0.7

0.8

0.9

1
Recall

Iprop

Iprop-N

Iprop-F

Iprop-FN

Figure 4.9: Rexa-Dblp with necessity properties filter.

Class label pages book title year volumn

Article P 0.86 0.98 0.35 0.98 /

Article 0.91 1.0 / 0.95 0.70

Table 4.6: Necessity values of the properties of the document classes based on the IProp-U.

17 of 20

Deliverable 5.2 ANR-NSFC Joint project

5. Conclusion

In Deliverable 5.1, we have proposed a novel instance matching approach to improve the
performance of larger scale instance matching in semantic integration systems. This approach
iteratively elaborate a global similarity between data sources by taking advantage of relatively
small query answers matched against each others and user feed back of the resulting match.
The iteratively built similarity can be use to export, at any time, an instance alignment
across data sets.

Here we further presented the way the global QM−similarity is computed. We evaluated
the proposed method against OAEI instance matching data sets. The merits of the various
presented strategies have been assessed and their benefits are clearly highlighted.

18 of 20

Lindicle Experiment results in one diagram

A. Experiment results in one diagram

Precision F-measure Recall

A.1. Eprints-Rexa.

Precision F-measure Recall

A.2. Eprints-Dblp.

Precision F-measure Recall

A.3. Rexa-Dblp.

19 of 20

Deliverable 5.2 ANR-NSFC Joint project

Bibliography

Gligorov, Risto, Warner ten Kate, Zharko Aleksovski, and Frank Van Harmelen (2007).
“Using Google distance to weight approximate ontology matches”. In: Proc. 16th inter-
national World Wide Web conference (WWW). ACM, pp. 767–776 (cit. on p. 7).

Madhavan, Jayant, S Jeffery, Shirley Cohen, Xin Dong, David Ko, Cong Yu, and Alon Halevy
(2007). “Web-scale data integration: You can only afford to pay as you go”. In: Proc. 3rd
Conference on Innovative Data Systems Research (CIDR), Asilomar (CA US), pp. 342–
350 (cit. on p. 5).

20 of 20

	Introduction
	Summary of the query-driven instance matching approach
	QM-similarity
	Definition
	Example
	Algorithm

	Evaluation
	Experimental setup
	Comparison with global matching
	User feedback
	Identifying and necessity properties

	Conclusion
	Experiment results in one diagram

